Permeability Prediction of 3-D Binary Segmented Images using Neural Networks

نویسنده

  • Nattavadee Srisutthiyakorn
چکیده

3-D digital rock image have recently become an important piece of information about the hydrocarbon reservoir properties. The goal of this project is to explore and employ machine learning as a tool to better understand the 3-D digital rocks from geometric measurement and features extracted from the image. Introduction This project applies machine learning to 3-D binary segmented images of the Fontainebleau and Berea sandstone, with the intention of finding a robust alternative way to estimate transport properties such as permeability. The permeability is one of the key to understand the nature of hydrocarbon reservoir and estimate its production capability. Conventionally, permeability is obtained from laboratory measurement of a rock core, which can take up to months to be completed. Recent technology in high resolution x-ray tomography have led to the increase in digital rock database. 3-D binary segmentation is applied after scanning. For single-phase fluid flow, the LatticeBoltzmann method is the established method for solving absolute permeability. The LatticeBoltzmann method approximates the Navier-Stokes equations at the pore scale. The calculation can be computationally expensive for large digital rock images. The calculation assumes no flow boundary conditions, and that the permeability depends only on pore geometry. In our calculations, the pressure gradient is only along the x-axis so that dP

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Pervious Concrete Permeability and Compressive Strength Using Artificial Neural Networks

Pervious concrete is a concrete mixture prepared from cement, aggregates, water, little or no fines, and in some cases admixtures. The hydrological property of pervious concrete is the primary reason for its reappearance in construction. Much research has been conducted on plain concrete, but little attention has been paid to porous concrete, particularly to the analytical prediction modeling o...

متن کامل

Integration of Color Features and Artificial Neural Networks for In-field Recognition of Saffron Flower

ABSTRACT-Manual harvesting of saffron as a laborious and exhausting job; it not only raises production costs, but also reduces the quality due to contaminations. Saffron quality could be enhanced if automated harvesting is substituted. As the main step towards designing a saffron harvester robot, an appropriate algorithm was developed in this study based on image processing techniques to recogn...

متن کامل

Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine

Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...

متن کامل

Accuracy comparison of Elamn and Jordan artificial neural networks for air particular matter concentration (PM 10) prediction using MODIS satellite images, a case study of Ahvaz.

Due to the complexity of air pollution action, artificial intelligence models specifically, neural networks are utilized to simulate air pollution. So far, numerous artificial neural network models have been used to estimate the concentration of atmospheric PMs. These models have had different accuracies that scholars are constantly exceed their efficiency using numerous parameters. The current...

متن کامل

Neural Prediction of Buckling Capacity of Stiffened Cylindrical Shells

Estimation of the nonlinear buckling capacity of thin walled shells is one of the most important aspects of structural mechanics. In this study the axial buckling load of 132 stiffened shells were numerically calculated. The applicability of artificial neural networks (ANN) in predicting the buckling capacity of vertically stiffened shells was studied. To this end feed forward (FF) multi-layer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014